

Date Planned : / /	Daily Tutorial Sheet-8	Expected Duration : 30 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

- **96.** One can obtain a silica garden if :
 - (A) Crystals of coloured cations are added to a strong solution of sodium silicate
 - **(B)** Sodium silicate solution is treated with a base
 - (C) SiF_4 is hydrolysed
 - (D) Silicon salts are grown in a garden
- **97.** Silicon carbide is used as a/an:

(A) abrasive (B) dehydrating agent

(C) solvent (D) catalyst

98. A student prepared a sample of silicon chloride by passing chlorine over heated silicon and collecting the condensed silicon chloride in a small specimen tube. He analysed the chloride in a small specimen tube. He analysed the chloride by dissolving a known mass of it in water, and titrating the solution with standard silver nitrate solution. The formula of the silicon chloride as obtained by this method was SiCl_{2.6} as against a 'true' formula of SiCl₄.

Which of the following possible errors could have resulted in this wrong formula?

- (A) The excess silicon chloride obtained is dissolved in chlorine
- (B) The "standard" silver nitrate solution was less concentrated than was stated on the label
- (C) More silicon chloride than the student supposed was actually used owing to inaccurate weighing
- **(D)** The small specimen tube was not dry
- **99. Statement-1**: Silicones are water repelling in nature.

Statement-2: Silicones are organosilicon polymers, which have (-R₂SiO-) as repeating unit.

- (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
- **(B)** Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- *100. The linear shape of CO_2 is due to :
 - (A) tetravalency of carbon
 - **(B)** sp hybridisation of carbon
 - (C) $p\pi p\pi$ bonding between carbon and oxygen
 - **(D)** catenation property of carbon
- *101. Me₃SiCl is used during polymerization of organo silicones because :
 - (A) The chain length of the organo silicon polymers can be controlled by adding Me₃SiCl
 - **(B)** Me₃SiCl blocks the end terminals of silicone polymer
 - (C) Me₃SiCl improves the quality and yield of the polymer
 - (D) Me₃SiCl acts as a catalyst during polymerization

- *102. Which of the following statements are correct:
 - (A) Fullerenes have dangling bonds
 - **(B)** Fullerenes are cage-like molecules
 - **(C)** Graphite is thermodynamically most stable allotrope of carbon
 - (D) Graphite is slippery and therefore used as a dry lubricant in machines
- *103. Identify the correct resonating structures of carbon dioxide from the ones given below :
 - $(A) \qquad O C \equiv O$
- $(\mathbf{B}) \qquad \mathbf{O} = \mathbf{C} = \mathbf{O}$
- (C) $\begin{array}{ccc} 2- & 2+ \\ C = O = O \end{array}$
- $(\mathbf{D}) \quad ^{-}\mathrm{O} \mathrm{C} \equiv \mathrm{O}^{+}$

 $\textbf{104.} \hspace{0.3in} \textbf{Silicon dissolves in excess of HF due to formation of:} \\$

- (A) SiF_4
- **(B)** SiH₄
- (C) H_2SiF_6
- **(D)** $Si(OH)_4$

105. The incorrect statement regarding below reaction is :

$$\begin{array}{c} & & & \\ \text{Al} & & & \\ \text{Metal} & & & \\ & & & \\ \text{Metal} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

- (A) Al shows amphoteric character
- (B) Gas 'P' and 'Q' are different
- **(C)** Both X and Y are water soluble
- **(D)** Gas Q is inflammable